Board Presentation
20FEB19
Carson City, NV (KCXP)
Nighttime Feasibility
Study

FlyCarsonCity.com

Potential Solution(s)

Feasibility Study

1 Benefits

Cost and Schedule

Likelihood of FAA Approval

Not included in this Feasibility Study

x Environmental Analysis
x Design
x Funding
x FAA Review

- Future a nalysis required to examine NEPA
- Exhibits are provided for ROM cost estimation and criteria considerations
- Mechanismsto obtain funding would be addressed via other processes
\square Study still needs to be reviewed with FAA Stakeholders

Nighttime Restrictions Flight Inspection

- (SP-07-268-15) Special request for night evaluation at Carson, C a rson City NV. Evaluation completed UNSATfor SIAP use at night. Both the RNAV (GPS)A AMDT1 a nd RNAV (GPS) RWY 27 ORIG -A were evaluated and determined to have insufficient visual references at night with rega rd to surrounding unlit, high terra in. These environmental factors do not provide a pilot with the proper visual cues necessary to "see and a void obstacles" a sstated in the Aeronautic al Information Manual section 5-4-20.b. 1 once below the MDA. Conditions unique to the night time environment present a signific ant haza rd during the visual maneuvering segment to execute a safe landing at night from an instrument a pproach. Runway 09 PAPIs are c urrently prohibited from night use.

Nighttime Restinctions RNAV. (GPS) - A

1. Flight Inspection Crews Could Not Distinguish Terra in Along Circling Approach (North a nd South of Runway)

느노NN

2. Flight Inspection Crews Could Not Distinguish Tema in Along Visual Portion of Offset Approach
3. No positive course guidance along circling or offset approach to assist pilots in a voiding terrain
Nighttime Restrictions RNAV (GPS) - 27

Aerona utical Data and Flight Procedures

岂노NN

Aeronautical Data

\checkmark Runway 09/27 is marked and lighted to accommodate nighttime operations
\checkmark REILs create additional safety for nighttime ops
\checkmark AWOS-3PT enables 24/7/365 local weather reporting
\checkmark VGSI (PAPI) on runway 27 is sufficient for straight-in obstacle/terrain separation
x VGSI (PAPI) on runway 09 is not sufficient for straight-in obstacle/terrain separation at night

Existing Approaches

x Old Circling Criteria
x No limitation on Circling Extent

- Explore Obstacle Lighting or Circling Lights (ICAO Only)

\checkmark New Circ ling Criteria
\checkmark Limited Circling Extent
- Explore Obstacle Lighting
- Explore Extended Approach Lighting System

\checkmark CATA-B Criteria Compliant
x CATC-D Can not be added due to offset >20 Deg
x Old Circling Criteria
- Explore Extended Approach Lighting System

Future Approaches

\checkmark CATA - C Capable
\checkmark Supports 700ft - 2 Miles
x RNP-AR Will Limit Utilization
x Missed Approach Limited
x Runway TCH Needs to Increase
\square Would benefit from MALSor MALSF
Would benefit from extended approach light system

- Potential to Consider LNAV to Extended Approach Light System "Fly Visual to Airport When Established on RLLS"

Geospatial

FAA AC-150-5300-18B VGA Survey

- Existing Obstacles

FAA DDOF

- Dec onflic ted Obstacles

FAA OE/AAA

- Windfarm

Carson City G IS

- Building Heights
- Zoning

- Used current and future a p proach centerlines as the basis for site exploration
- Explored current a irport lighting and vault for solutions c lose to threshold
- Investigated offsite for a vailable power and elevation

屶노NN

Site Assessment Array 1 a nd 2 Vic inity

能

Site Assessment Arra y 4 Vic inity

ا 는NN

Lighting Solutions

Obstacle Lights

Obstacle Lights

- 16 Obsta cle Light Areas (Initial Estima te)
- Solar/LED
- 5 YearReplacement

Benefits

- Illuminates highest terra in in visual segment of a p proach
- Providesterra in a wareness in teminal area

Drawbacks

- Does not c over entire circling or teminal a rea
- Does not create obviouspath to runway
- May not result in SATfor nighttime operations
- Can not be monitored from aiport, without substantial cost
- Land must still be acquired for pole mount above vegetation

Extended Approach Light System

Runway Lead-In Light System (RLS)

- Sequence of Lead-In (LDIN) Light a rays
- Used for challenging terra in separation, urban dec onflic tion and noise abatement

Benefits

- FAA can consider a p proach light credit with an RLSS, if a pplicable to procedure
- Can be used with by all pilot skill level
- Creates positive course guidance to runway

Challenges

- Off aiport design
- Does not typic ally put terra in into perspective

Active FAA RLLS Insta lla tions

- 12 Active US RLS Insta llations
- Most famous is New York (KJ FK) Canarsie Approach
- Juneau (PAJ N) has one of the oldest continuous RLS for offset LDA and RNAV approach to runway 08

Aipport		RWY	Vishbility Credit	
KRID	24	5 (ODALSFlashing)	Yes	N
PAGB	13	Unknown	Unknown	N
KHQZ	18	3	No	N
KHQZ	36	5	No	N
KSRB	4	4	Yes	N
PAJ N	8	$5,5,5$ to MALSF	Yes (LNAV Only)	Y
KPWK	16	21 (Arranged in MALSF Pattem)	No	N
KJ FK	13 L	$7,21,5,5$ to ALSF-II	No	Y
KJ FK	13 R	7	No	Y
KTRL	17	6	No	N
KMDW	$13 C$	3	No	N
KMDW	$31 C$	3	No	N
KM Y	2	5	No	N
KDPA	10	5	No	N
KSUE	2	3	No	N

Lighting Solutions: RШS Options

- All RUSO ptions Consider
- LDIN orMALS at Runwa y Threshold
- 1 LDIN Array at Offset Flight Procedure Juncture
- 1 LDIN NearMDA
- 2 Obsta cle Lights
- Primary Variations(1-4)
- At Runway Threshold
- MALS
- MALSF
- 3 Light LIN
- At Offset Flight Procedure J uncture
- 3 Light LIN
- 5 Light LIN
- Secondary Variations (A and B)
- Additional 3 Light LDIN at Future MDA for CAT C/D

Option A1: MALS, $5 \times \operatorname{LDIN}, 3 \times L D I N, 3 x L D I N$ Option B1: MALS, 5xLDIN, 3xLDIN

LEGENDS:
 2W-4"C DUCTBNKK

CW MLS/WNS 11 -ICHT BAR TO BE NSTMLED

NEW MLS/WLSS 5-LGGT BAR TO BE INSTNLED

NEW MLSF FUSHWG LGCTT TO BE INSTNLED
NEW LIN LGET TO BE NSTMUED

EW SHETER

EW TRANSFORMER
ExSTING UTIITY POLE
EXISTNG HeNOHOLE

ROM Cost Estimation

Direct Cost

- Power Elements
- Lights
- Cabling
- Ductbank
- Transformers
- NV Energy Connections
- Control Elements
- Shelters/ Fenc ing
- Foundations/Poles
- Solar Obsta c le Lights

Design and Implementation Cost

- Testing a nd Commissioning
- Design a nd CM
- Flight Inspection
- Contingency

Limitations

- No estimated cost for property easements
- Final number, position and orientation of LDIN a rrays will directly effect overall cost

Likelihood of FAA Nighttime Approval

Nighttime Approval Scale

- 10 - FAA is likely to issue nighttime operations with no additional cost or operational restric tions
- 7 - FAA is likely to issue nighttime operations with some additional cost or operational restrictions
- 5 - FAA may issue nighttime operations with some additional cost or operational restrictions
- 3-FAA is unlikely to issue nighttime operations without additional design modific ation or restrictions
- 1 - FAA is Unlikely to issue nighttime operations

Limitations

- This sscale is based on Lean's experience working on similar a irspace and flight procedures challenges
- FAA has the final a uthority on whether nighttime flight operationscan occur
- Nighttime approval is granted based on the skill of the least tra ined/least experienced pilot that can fly to KC XP
- There are few exa mples of RUS in the US used for terrain separation with reduced obstacle lighting (PAJN)
- FAA Stakeholder Meeting is critic al to further refine these estimates

Feasibility Option	Drawing Set	RUS Configurations		ROM Cost	Easement Area (ft $2 /$ / Acre)	Likelihood of Nighttime Approval	
		Components	Graphic			CATA - B	CATC - D
A1	1	MALS, 5xLDIN, 3xLDIN, 3xLDIN		\$4,718,640	27475 / 0.63	9	8
A2	2	MALSF, 3xLDIN, 3xLDIN, 3xLDIN		\$4,464,360	21575 / 0.49	9	8
A3	3	$3 \mathrm{LLDIN}, 5 \times \mathrm{L}$ DIN, 3xLDIN, 3xLDIN		\$3,949,560	27475 / 0.63	8	6
A4	4	3xLDIN, 3xLDIN, 3xLDIN, 3xLDIN		\$3,678,900	21575 / 0.49	8	6
B1	1	MALS, $5 \times$ DIN, 3xLDIN	\cdots	\$4,112,580	18850 / 0.43	9	7
B2	2	MALSF, 3xLDIN, 3xLDIN		\$3,858,300	12950 / 0.29	9	7
B3	3	$3 x$ DIN, 5xLDIN, 3xLDIN		\$3,343,500	18850 / 0.43	6	5
B4	4	3xLDIN, 3xLDIN, 3xLDIN		\$3,072,840	12950 / 0.29	6	5
OL	NA	Obstac le Lights on Terrain	16 Areas	\$2,122,800	25600 / 0.58	4	3

Overall Feasibility

Historical Weather and Operational Benefit

RWY 09 Capable of Supporting Operations

RWY 09 Wind

Day	91.93%	82.93%	69.83%	67.05%	67.73%	63.07%	67.19%	69.94%	76.98%	84.87%	86.56%
年											

RWY 27 Capable of Supporting Operations

RWY 27 Wind

Day	85.14%	83.35%	82.50%	84.17%	90.43%	92.80%	97.04%	97.20%	89.41%	83.15%	80.54%
Night	$\mathbf{9 6 . 1 5 \%}$	$\mathbf{9 3 . 4 1 \%}$	$\mathbf{9 3 . 2 1 \%}$	$\mathbf{9 3 . 9 0 \%}$	$\mathbf{9 7 . 1 4 \%}$	$\mathbf{9 8 . 8 4 \%}$	$\mathbf{9 9 . 4 5 \%}$	$\mathbf{9 9 . 5 8 \%}$	$\mathbf{9 8 . 5 6 \%}$	$\mathbf{9 5 . 6 9 \%}$	$\mathbf{9 4 . 7 8 \%}$
$\mathbf{9 3 . 7 7 \%}$											
24 HR	91.57%	89.22%	88.30%	89.03%	93.23%	95.06%	98.04%	98.19%	93.99%	89.94%	88.85%

Likelihood That Airc raft Will Land

CATB - 1500ft - 1 1/2 Miles

RWY 27 LNAV Overall Effic iency (CATB)

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
	0:00	91.93\%	92.40\%	92.97\%	95.04\%	97.85\%	99.30\%	99.46\%	99.86\%	99.57\%	96.57\%	95.63\%	91.88\%
	1:00	91.65\%	92.32\%	92.17\%	95.11\%	97.02	98.46\%	99.60\%	100.00\%	99.58\%	97.26\%	94.84\%	90.94\%
	2:00	91.20\%	91.14\%	92.76\%	95.37\%	98.11\%	99.69\%	99.86\%	99.86\%	99.01\%	97.42\%	94.63\%	90.46\%
	3:00	91.56\%	90.05\%	92.94\%	94.75\%	97.72	99.13\%	99.90\%	99.45\%	99.30\%	96.70\%	94.24\%	90.45\%
	4:00	89.99\%	92.68\%	91.68\%	94.16	98.24	99.13\%	100.00	99.76\%	99.44\%	94.86\%	94.51\%	89.79\%
	5:00	89.97\%	92.44\%	90.29\%	95.30	97	99.16\%	100.00	100.00	99.72\%	96.39\%	92.87\%	89.6
	6:00	90.01\%	92.82\%	92.18	96.43	98.52	99.30\%	100.00	99.72\%	99.58\%	96.80\%	. 07	89.78\%
	7:00	88.44\%	93.07\%	91.15\%	95.79	97.14	98.23\%	99.73\%	98.66\%	99.72\%	96.19\%	93.13\%	88.61\%
	8:00	87.79\%	91.09\%	90.27\%	92.75	96.41	96.41\%	99.35\%	98.22	99.30	94.71\%	91.64\%	87
	9:00	87.95\%	89.28\%	86.32\%	86.78	93.76	93.43\%	99.46\%	97.52	97.63\%	93.31\%	90.53\%	84.79\%
	10:00	85.14\%	86.78\%	83.44\%	88.97\%	90.34\%	89.90\%	99.32\%	98.18\%	95.91\%	91.14\%	88.74\%	81.93\%
	11:00	83.16\%	84.34\%	81.79\%	83.80\%	87.42\%	90.84\%	98.37\%	98.17\%	94.87\%	89.75\%	84.11\%	81.62\%
	12:00	79.96\%	75.73\%	81.17\%	81.17\%	87.43\%	90.65\%	96.88\%	95.74\%	91.14\%	83.06\%	73.21\%	76.56\%
	13:00	73.56\%	76.44\%	78.03\%	77.32\%	86.30\%	91.59\%	95.64\%	95.20\%	82.09\%	75.31\%	65.72\%	72.08\%
O.	14:00	66.89\%	72.22\%	72.74	79.33	84.03	87.12\%	94.47\%	95.83\%	81.15\%	75.10\%	62.36\%	68.46\%
	15:00	64.26	73.50\%	72.71	78.54	86.75	88.93\%	93.24\%	93.64\%	81.87	66.52	68.91	66.09\%
	16:00	73.35\%	74.62\%	74.70\%	78.86	86.35\%	89.80\%	92.49\%	92.99\%	80.67\%	68.22\%	79.07\%	81.56\%
	17:00	88.24\%	83.70\%	77	78.44	85.68	91.64	93.19	95.66	81.03	72.20\%	88.79\%	90.25\%
	18:00	92.67\%	87.43\%	82.46\%	82.78	88.78	92.24\%	95.14\%	96.30\%	86.98	83.62\%	92.22\%	92.00\%
	19:00	93.54\%	90.18\%	88.99\%	87.11\%	93.93	94.37\%	97.03\%	97.34\%	93.70\%	92.00\%	94.13\%	92.34\%
	20:00	93.18\%	92.25\%	91.12\%	90.52\%	94.50	96.32	96.34\%	97.71\%	98.22	96.26\%	94.70\%	90.54\%
	21:00	93.05\%	92.41\%	91.45\%	93.99\%	95.48\%	97.43\%	99.73\%	99.14\%	97.59\%	95.87\%	93.61\%	93.08\%
	22:00	93.52\%	92.99\%	93.76\%	92.55\%	96.00\%	98.74\%	99.42\%	99.59\%	98.44\%	97.31\%	94.21\%	92.81\%
	23:00	93.86\%	92.13\%	94.31\%	92.98\%	95.83\%	98.50\%	99.73\%	100.00\%	98.58\%	96.81\%	94.68\%	92.03\%

| Day | 79.05% | 81.71% | 80.91% | 83.71% | 90.20% | 92.72% | 96.74% | 96.66% | 89.36% | 82.32% | 79.74% | 78.90% |
| :--- | | Night | $\mathbf{9 1 . 7 4 \%}$ | $\mathbf{9 1 . 0 7 \%}$ | $\mathbf{9 1 . 3 1 \%}$ | $\mathbf{9 3 . 6 1 \%}$ | $\mathbf{9 6 . 8 7 \%}$ | $\mathbf{9 8 . 8 4 \%}$ | $\mathbf{9 9 . 4 0 \%}$ | $\mathbf{9 9 . 5 4 \%}$ | $\mathbf{9 8 . 5 6 \%}$ | $\mathbf{9 5 . 2 2 \%}$ | $\mathbf{9 3 . 7 2 \%}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{9 1 . 1 4 \%}$ | | | | | | | | | | | | | 24 HR | 86.45% | 87.17% | 86.55% | 88.66% | 92.98% | 95.01% | 97.85% | 97.86% | 93.96% | 89.31% | 87.90% | 86.04% |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$4 \operatorname{li}^{4}$

Likelihood That Airc raft Will Land

CATB - 1200ft - 1 1/2 Miles

RWY 27 LP Overall Efficiency (CATB)

 \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline Night \& $\mathbf{9 2 . 5 8 \%}$ \& $\mathbf{9 1 . 1 3 \%}$ \& $\mathbf{9 1 . 3 9 \%}$ \& $\mathbf{9 3 . 7 0 \%}$ \& $\mathbf{9 7 . 0 2 \%}$ \& $\mathbf{9 8 . 8 4 \%}$ \& $\mathbf{9 9 . 4 0 \%}$ \& $\mathbf{9 9 . 5 4 \%}$ \& $\mathbf{9 8 . 5 6 \%}$ \& $\mathbf{9 5 . 2 3 \%}$ \& $\mathbf{9 3 . 9 1 \%}$

$\mathbf{9 1 . 3 6 \%}$

\hline

\hline 24 HR \& 87.20% \& 87.29% \& 86.64% \& 88.76% \& 93.07% \& 95.01% \& 97.85% \& 97.86% \& 93.96% \& 89.35% \& 88.02%

\hline
\end{tabular}

$4 \operatorname{li}^{4}$

Likelihood That Airc raft Will Land

RWY 27 RNP orFuture Approach to LDIN Overall Efficiency

| Day | 80.84% | 81.90% | 81.13% | 83.83% | 90.24% | 92.69% | 96.73% | 96.48% | 89.35% | 82.36% | 79.86% | 79.67% |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Night | $\mathbf{9 3 . 2 3 \%}$ | $\mathbf{9 1 . 5 0} \%$ | $\mathbf{9 1 . 5 4 \%}$ | $\mathbf{9 3 . 7 3 \%}$ | $\mathbf{9 7 . 1 4 \%}$ | $\mathbf{9 8 . 8 4 \%}$ | $\mathbf{9 9 . 4 0 \%}$ | $\mathbf{9 9 . 5 4 \%}$ | $\mathbf{9 8 . 5 6 \%}$ | $\mathbf{9 5 . 2 5 \%}$ | $\mathbf{9 4 . 0 0 \%}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\mathbf{9 1 . 8 8 \%} \mathrm{\mid}$ | 24 HR | 88.07% | 87.50% | 86.77% | 88.78% | 93.11% | 95.00% | 97.84% | 97.75% | 93.96% | 89.34% | 88.11% |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$4 \operatorname{li}^{4}$

Benefits

\checkmark Increase overall a irport operations from tra ffic that typic ally needs to land at night
\checkmark Enable aircraft to a void operating during daytime high wind periods
\checkmark RLS Solution provides additional
 level of vertical flight path protection due to placement along terra in

它농N

Summary

1. Is there a solution?
2. What are the benefits?
3. How much will it cost and how long might it take?
4. Will the FAA

Approve
Nighttime Ops?

- Yes
- Nighttime Operations
- Improved Safety
- \$3-\$5M
- 2-4 Years
(Depending on Funding)
- To Be Determined

FlyCarsonCity.com

Option A1: MALS, $5 \times \operatorname{LDIN}, 3 \times L D I N, 3 x L D I N$ Option B1: MALS, 5xLDIN, 3xLDIN

LEGENDS:

\because DIN STATION 1 EANIARGEMENTL

(1)LDN STATION 2 ENLARGEMENT

GLEAN

GLEAN

Option A2: MALSF, $3 \times$ LDIN, $3 \times L D I N, 3 \times L D I N$ Option B2: MALSF, 3xLDIN, 3xLDIN

LEGENDS:

Cond

 2W-4"C DUCTBANK NEW MLLS/WLSF 5-LCHT BAR TO BE INSTALED NEW MUSF RASHNG LCAT TO BE INSTNUED SI LDN LGAT TO EE NSTULIE

NEW SHETER

NEW TRWSSFORMER ExSTNG UTIUTY POLE EXSTNG HANOHOLE
(1)MALSF ENIARGEMENT

FlyCarsonCity.com
GLEAN

\because DIN STATION $1+$ ENIARGEMENTL

CW MLS/WLSF 11-LUATT BAR TO EE NSTMLED

 NEW MLS/WLSF 5-UCHT BAR TO BE INSTNUED IEW MLSF FLSHING LCHT TO BE INSTNLID NEW LIN LCHT TO BE NSTNLEDICW SHARER
new trensformer
ExSTNG UTLUTY POLE
SXSTING HANOHOLE

GLEAN

Option A3: 3xLDIN, 5xLDIN, 3xLDIN, 3xLDIN Option B3: 3xLDIN, 5xLDIN, 3xLDIN

Option A4: 3xLDIN, $3 \times \operatorname{LDIN}, 3 \times L D I N, 3 x L D I N$ Option B4: 3xLDIN, 3xLDIN, 3xLDIN

Likelihood That Airc raft Will Land

CATD - 1800ft - 3 Miles

RWY 27 RNAV GPS-A Overall Efficiency

		JAN	FB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
	0:00	90.70\%	91.78\%	92.70\%	94.65\%	97.71\%	99.30\%	99.46\%	99.69\%	99.43\%	96.57\%	95.49\%	91.08\%
	1:00	90.43\%	92.32\%	92.04\%	94.79\%	96.89\%	98.46\%	\%	100.00\%	99.58\%	96.68\%	94.70\%	90.60\%
	2:00	90.68\%	90.68\%	92.35\%	94.	97.84\%	99.27\%	99.86\%	99.73\%	99.01\%	97.28	94.49	89.89\%
	3:00	90.16\%	89.58\%	92.53\%	94.33\%	97.18\%	98.71\%	99.90\%	98.48\%	99.30\%	96.70\%	93.26	89.38\%
	:00	89.03\%	91.71\%	91.27\%	94.02\%	97.	99.13\%	100.0	8.79	99.44\%	94.58\%	4.0	88.80\%
	5:00	89.15\%	92.	89.62\%	95.30\%	97.94\%	99.16\%	100.00\%	98.76\%	99.72\%	84	92.60\%	88.50\%
	00	89.22\%	92.20\%	1.91\%	95.59\%	97.85	99.30	100.00	97.79\%	99.16	96.80	91.71	88.88
	7:00	87.76\%	91.54\%	90.74\%	95.19\%	96.46\%	98.23\%	3\%	96.14\%	99.16\%	05\%	91.87\%	87.11\%
	8:00	87.04\%	90.28\%	89.86\%	92.61\%	95.74\%	95.99\%	99.08\%	95.22\%	98.70\%	94.40\%	90.9	85.50\%
	9:00	87.50\%	88.48\%	5.68	86.53	93.35	93.29\%	99.32\%	94.21\%	97.35	2.79	89.86	32.3
	10:00	83.77\%	86.51\%	83.17\%	88.72\%	90.34\%	89.90\%	99.32\%	95.61\%	95.63\%	90.86\%	88.04\%	79.95\%
	11:00	81.66\%	84.19	81.22\%	83.70\%	87.15	90.70\%	98.23\%	96.79\%	4.45	8.63\%	83.2	0.73
	12:00	77.91\%	74.92	80.33	80.89\%	87.	90.65	96.88\%	95.19\%	91.14\%	1.65	72.3	75.15\%
	13:00	72.04\%	75.97\%	76.77\%	77.04\%	85.19\%	91.45\%	95.64\%	94.68\%	81.67\%	74.48\%	64.33\%	71.06\%
	14:00	65.37	71.64	72.23\%	79.05\%	83.12	36.98	94.20\%	95.01	80.59	7.10\%	61.4	67.74
	15:00	63.12\%	72.58\%	71.26\%	78.26\%	86.35\%	8.79\%	93.10\%	93.64\%	81.73\%	65.83\%	68.4	64.84\%
	16:00	71.39\%	73.39\%	74.16\%	78.57\%	85.68\%	9.66\%	92.36	92.58\%	80.39\%	67.39\%	78.37\%	79.80\%
	17:00	86.86\%	82	77.34\%	78.02\%	84.0	91.64\%	22.92	94.84\%	80.89\%	71.65\%	88.65\%	89.50\%
	18:00	91.98\%	86.81\%	82.16\%	82.78	87.30\%	92.24\%	95.01\%	88\%	86.27\%	83.21\%	91.94\%	1.40\%
	19:00	92.85\%	89.23\%	88.41\%	86.69\%	93.12	94.37	7.03\%	96.93	93.	91.72	93.8	91.74\%
	20:00	91.77\%	92.	. 18	90.38\%	94.37	95.	96.34\%	97.	98.2	95.70\%	94.53\%	92.54\%
	21:00	91.59\%	91.95\%	91.05\%	93.51\%	95.48\%	97.43\%	99.73\%	99.14\%	97.59	95.04\%	93.23	92.63
	22:00	92.04\%	92.07\%	93.49\%	92.55\%	95.87\%	98.74\%	99.42\%	99.59\%	98.44\%	96.62\%	93.86\%	5\%
	23:00	92.	91.	94.	92.	95.	98.08	99.73\%	100.00	98.5	96.5	93.8	91.28\%

| Day | 77.76% | 80.95% | 80.25% | 83.45% | 89.49% | 92.61% | 96.63% | 95.32% | 89.00% | 81.62% | 78.88% | 77.42% |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Night | $\mathbf{9 0 . 6 4 \%}$ | $\mathbf{9 0 . 4 6 \%}$ | $\mathbf{9 0 . 9 4 \%}$ | $\mathbf{9 3 . 3 1 \%}$ | $\mathbf{9 6 . 6 4 \%}$ | $\mathbf{9 8 . 7 0 \%}$ | $\mathbf{9 9 . 4 0 \%}$ | $\mathbf{9 9 . 1 9 \%}$ | $\mathbf{9 8 . 4 8 \%}$ | $\mathbf{9 4 . 8 7 \%}$ | $\mathbf{9 3 . 3 1 \%}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{9 0 . 4 3 \%}$ | | | | | | | | | | | | | 24 HR | 85.27% | 86.50% | 86.04% | 88.38% | 92.47% | 94.89% | 97.79% | 96.93% | 93.74% | 88.80% |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

